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Introduction

The watershed transit time distribution (TTD) describes the distribution of times that water 
travels along various pathways from entrance (e.g., rainfall) to exit (e.g., discharge) of a 
watershed. The TTD varies spatially and temporally according to local characteristics 
including catchment geometry, topography, soil type, and climatic conditions (McGuire & 
McDonnell 2006). Hydrologists have historically lacked adequate data and theory to 
characterize the time-varying nature of TTDs. Studies of environmental tracer data have 
instead tried to estimate a mean transit time (mTT) or a stationary TTD (McGuire & 
McDonnell 2006). These approximations have provided useful insight into the sensitivity of 
catchments to anthropogenic inputs and land-use changes (McDonnell et al. 2010). New 
theory and modeling tools are emerging, however, that characterize the dynamism of TTDs 
(hereafter referred to as dynamic TTDs or dTTDs). Multiple studies suggest that modeling the 
time-varying nature of dTTDs improves our understanding of watershed processes that inter 
alia control chemical transport (e.g., Rodhe et al. 1996; Heidbuechel et al. 2012; Harman 
2015). Understanding dTTDs may be especially important to efforts to restore water quality 
in the Chesapeake Bay. Non-stationarity in the dTTD could alter the timing and quantity of 
sediment and nutrient loads transported from the Chesapeake Bay Watershed (CBW). 
Previous studies suggest that water quality in the Chesapeake Bay – the largest estuary in the 
United States – can be sensitive to relatively small upstream changes (Kemp et al. 2005). One 
phenomena with the potential to shift dTTDs across the CBW is anthropogenic climate 
change. Few studies, however, have explicitly quantified the association between climate and 
dTTDs and its implications under a changing climate (though see for example Capell, Tetzlaff, 
& Soulsby, 2013). 

Objectives

We present ongoing work to understand the extent to which shifts in climate cause shifts in 
watershed dTTDs which cause shifts in the quantity and timing of chemical transport in the 
CBW and other watersheds. The specific questions examined are:
• How much of the variability in dTTD estimates across different watersheds can be 

explained by variability in climate? Which climatic variables (e.g., precipitation, ET, 
temperature) explain the most variability?

• How much is already known about dTTDs as well as the potential extent of climate 
change within sub-catchments of the Chesapeake Bay Watershed? 

Perceptual Model

Figure 1 shows a perceptual 
model of the phenomena under 
investigation. First, climatic shifts 
cause changes in watershed fluxes 
(e.g., rainfall, ET) and watershed 
structure (e.g., variable source 
areas) that change flow pathways 
and other hydrologic processes. 
Second, these changes manifest 
as non-stationarity in the dTTD of 
the watershed. Third, the new 
dTTD reflects a new regime for 
chemical transport due to 
changes in travel times and other 
time-dependent transport 
processes (e.g. radioactive decay). 

Figure 1 (above right). Perceptual model of the relationship under study between climate variability, 
dynamic transit time distributions, and chemical transport. Figure 2 (below). Map of identified 
watersheds with estimates of the time varying mTT

Discussion and Conclusions

• Regional climate data explained a significant portion of the 
variability in time-varying mTT estimations across six different 
study sites. A random forest model found that increases in P (T, 
ET) are associated with decreases (increases) in mTT. 

• Median GCM projections for 2075-2095 under a relatively high 
greenhouse gas emission scenario show increased temperatures 
(especially in the summer, higher certainty) and precipitation 
(especially in the winter, lower certainty) throughout the CBW.

• Our study of multiple watersheds suggests that the median 
projected changes in temperature and precipitation in the CBW 
under a changing climate would drive the mTT in opposite 
directions.

• Observed spatial heterogeneity of mean groundwater ages 
across the CBW is high.  This could complicate the application of 
existing dTTD theory for simulation of chemical transport to the 
bay. 
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Figure 7. Map showing estimates of mean groundwater age across the Chesapeake Bay. Climate 
projections were tabulated for the three shaded watersheds: the Susquehanna (Sus), Potomac 
(Pot), and James (Jam) rivers. All age data from Lindsey et al. (2003) and Ward and Pope (2013). 

Figure 3. Plots of the time varying mTT
for the six watersheds included in our 
study (blue line) and simulated mTT 
given by the random forest model with 
local climate as predictors (red dashed 
line). Raw data was digitized from the 
papers identified in Table 1.

2. Climate and mTT variability in the 
Chesapeake Bay Watershed

Methods: To begin to understand potential future climate 
variability in the CBW, we acquired all CMIP5 downscaled 
monthly climate projections under the RCP8.5 scenario 
available for download at the "Bias Corrected and Downscaled 
WCRP CMIP5 Climate Projections" archive as of 3/19/2015 (70 
total) at 1/8 degree resolution (Maurer & Brekke 2007). The 
RCP8.5 scenario has the highest greenhouse gas emissions 
providing a “worst case” for initial analysis. The monthly 
estimates were averaged over three sub-catchments of the 
CBW (i.e., Susquehanna, Potomac, and James Rivers) for 
baseline years (1985-2005) and future years (2075-2095) and 
the difference calculated over all time and each season. To 
begin to understand the dTTD of the CBW, we assembled and 
geocoded known published estimates of mean groundwater age 
across the CBW and plotted them over the three catchments 
considered. The age of multiple estimates from the same 
location were averaged.  Note that no explicit estimates of 
dTTDs within the CBW were found.  

Results: Figure 6 shows the downscaled simulations of the 
effect of climate change across the three watersheds of the 
Chesapeake Bay Watershed. There is considerable spread across 
the different models. The median temperature increase ranges 
roughly between 3-7oC with the largest increases in the summer 
and little variation across the watershed. The median 
precipitation increases although some models predict a 
decrease. The seasonal trends are generally consistent across 
basins, with relatively higher precipitation in winter and lower 
precipitation in summer. Figure 7 shows the spatial distribution 
of 212 separate estimates of groundwater age across the 
watershed from two USGS-authored publications (Lindsey et al. 
2003; Sanford & Pope 2013). There is significant heterogeneity 
in the mTT across the watershed, even at close distances, as has 
been reported previously (Lindsey et al. 2003). 

Figure 6. The downscaled CMIP5 simulations of the change in temperature (top) and precipitation 
(bottom) of climate change across three watersheds of the Chesapeake Bay Watershed shown in 
Figure 6. Delta values are the difference between monthly average values in the future scenario 
(2075-2095) and the baseline (1985-2005). Box and whiskers plots show the spread of 70 different 
downscaled GCMs under the RCP8.5 high emissions scenario (red line: median, box bottom/top: 
25/75% percentile, line bottom/top: data extent excluding outliers). Delta values considering the 
full year and seasons are shown.

1. Climate and mTT variability across 
multiple watersheds

Methods: We reviewed the literature to identify modeling studies 
with time-series estimates of the mean (or median) transit time 
(mTT) of the dTTD. Plots of dTTD were digitized using Engauge 
Digitizer software (v4.1) for subsequent analysis in Pandas Python 
Data Analysis Library (v0.15.2), resampled into monthly averages, 
normalized to z scores, and log transformed. Monthly climate data 
(temperature (T), precipitation (P), and evapotranspiration (ET)) 
was acquired for the overlapping 1/8 degree resolution grid cell 
for each study watershed from the Global Land Data Assimilation 
System (GLDAS) (Rodell & Houser 2004) for the study period plus 
ten years prior. GLDAS soil moisture from depths of 1-10cm (S) was 
also examined. Monthly values of P, T, and ET were weighted 
exponentially backward using the decay parameter 𝜏 [month-1] 
that resulted in the highest absolute rank correlation with dTTD. 
Climate values were also normalized. Five different predictive 
algorithms (stepwise GLM, lasso regression, random forest, MARS, 
and the mean) were compared in a 100-fold cross validation with 
20% holdout in R software (v3.0.2). The top performing model 
based on mean square and absolute error was fit with all the data 
and examined for inference. 

Results: We identified and digitized six studies with time-series 
estimates of mTTs from 3.4-6.1 years in duration for three 
different flow paths: groundwater, root zone, and all paths (see 
Figures 2-3 and Table 1). Figure 4 illustrates the relationship 
between mTT and the climate variables P (𝜏=5 months-1), T (1 
month-1), ET (2 months-2), as well as S (1 month-1). The random 
forest (RF) model performed slightly but significantly better than 
the others with a mean absolute error of 0.64. Figure 3 shows that 
the RF simulations reproduced the general behavior of the 
observations, though some significant variability was missed. The 
RF partial dependence plots (Figure 5) shows that increases in P 
(T,ET) are associated with lower (higher) mTT. Measures of 
variable importance (not shown) indicate that P is most important 
to the accuracy of model estimates. 

Figure 4 (above). Scatterplot of mean monthly GLDAS climate 
parameters (plus soil moisture) against log normalized mTT in the 
six watersheds studied. Note slight slopes can be observed, 
particularly for P and S. Figure 5 (right). Partial dependence of 
climate variables on mTT as given by the random forest model. 
Low P and high ET and T are associated with high mTT. Table 1 
(below). Description of the six watersheds included in this study 
including mean GLDAS climate data. [1] mTT values reported in 
Harman (2015) are medians, not means. 
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Rodhe et al. (1996) Gardsjon 0.0063 18O All 3.4 82 0.6 280 14.1 19.0 27.7 Convolution with flow-weighted time.

Heidbuchel et al. (2012) Marshall Gulch 1.54
18

O, 
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H All 4.4 292 0.4 292 4.3 3.9 11.0 Mixing model with dynamic storage.
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All 4.0 185 0.3 279 16.3 37.1 29.0 Time varying transfer function.

Harman (2015) Lower Hafren 3.5 Cl- All 5.0 6811 0.5 282 20.2 47.1 28.5 Age ranked storge selection function.

Morganstern et al. (2010) Toenapi 15.1 3H GW 6.1 6810 1.4 287 33.4 50.5 27.9 Exponential-piston flow model.

Benettin et al. (2013) Hupsel Brook 6.5 Cl- GW 3.8 1084 0.1 284 16.7 23.3 21.8 Two reservoirs with random sampling.

RZ 3.8 84 0.2 284 16.7 23.3 21.8
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