What Can Catchment Transit Time Distributions Tell Us About Runoff Mechanisms? **Exploring "Age Equifinality" with an Integrated Surface-Groundwater Model.**

Daniel Wilusz^{1*}, Reed Maxwell², Anthony Buda³, William Ball^{1,4}, Ciaran Harman¹

¹Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, Maryland, USA. ² Hydrologic Science and Engineering Program, Integrated GoundWater Modeling Center, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA. ³Pasture Systems and Watershed Management Research Unit, Agricultural Research Service, USDA, University Park, Pennsylvania, USA. ⁴Chesapeake Research Consortium, Edgewater, Maryland, USA. *Contact: Dano Wilusz at dwilusz1@jhu.edu

1. Abstract

Motivation

- The ability to use water age to make inferences about dominant runoff mechanisms depends on the degree of "age equifinality" in a watershed.
- "Age-equifinality" is defined here as the phenomenon where significant volumes of similarly-aged water are discharged at the same time from different runoff generation mechanisms.

Experimental objectives

- To develop better tools for simulating timevarying transit times through multiple catchment flow pathways.
- To understand the extent and mechanistic drivers of age-equifinality in a relatively complex, physically-based watershed modeling environment.

What was found (preliminary)

- Incorporating information about catchment velocities into the calibration of a physicallybased model improved parameter selectivity, though less than expected.
- A simple modification to conventional particle tracking algorithms can track the age of ET.
- Substantial age-equifinality was observed, especially between overland flow, interflow, and shallow groundwater recharge.
- Post-processing of model output using rank StorAge Selection functions helps reveal mechanistic drivers.

Partial support provided by NSF CBET Water, Sustainability, and Climate Grant (ID#1360345) and a 2016 Geological Society of America Student Research Grant.

2. FD36 at Mahantango, PA USA: a USDA experimental catchment.

Figure 1. Photograph of the 0.4 km² study catchment. This study uses discharge data from the outlet, meteorological data from a nearby weather station, and various measurements of watershed properties.

